
Week 11 – Monday

 What did we talk about last time?
 Synchronization
 Locks
 POSIX mutexes

 Create a mutex with the specified attributes

 Destroy an existing mutex

 Acquire a mutex, blocking until you succeed

 Try to acquire a mutex, returning non-zero if another thread has the mutex

 Release the mutex

int pthread_mutex_init (pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);

int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_mutex_lock (pthread_mutex_t *mutex);

int pthread_mutex_trylock (pthread_mutex_t *mutex);

int pthread_mutex_unlock (pthread_mutex_t *mutex);

 Here's a thread that uses a mutex when incrementing a global variable

int global = 5;

// Each increment thread gets a pointer to the mutex
void *
increment (void *args)
{
pthread_mutex_t *mutex = (pthread_mutex_t *) args;

// Lock for the critical section, then release
pthread_mutex_lock (mutex);
global++;
pthread_mutex_unlock (mutex);

pthread_exit (NULL);
}

 The following program creates the mutex and passes it to two threads
 Note that the mutex lives on the stack, but that's okay since this function won't return

until after the other threads are done

pthread_t threads[2];
pthread_mutex_t mutex;

// Initialize the mutex
pthread_mutex_init (&mutex, NULL);

// Create the child threads, passing pointers to the mutex
assert (pthread_create (&threads[0], NULL, increment, &mutex) == 0);
assert (pthread_create (&threads[1], NULL, increment, &mutex) == 0);

// Join the threads
pthread_join (threads[0], NULL);
pthread_join (threads[1], NULL);

// Confirm the result
assert (global == 7);

 POSIX mutexes have a few weird things that you should not
do, because there's no telling what will happen:
 Trying to lock a mutex that the thread has already locked
▪ This isn't a problem in Java, which allows a thread to lock a lock repeatedly

without issue

 Trying to unlock a mutex that a different thread has acquired
 Trying to lock or unlock a mutex that hasn't been initialized
▪ Like all variables in C, it's full of garbage before it's initialized

 In the old days, we had multiple threads but not multiple cores
 Thus, unlocking a lock would mean that the other thread couldn't

acquire the lock until it was scheduled (requiring a context switch)
 Now, we have multicore systems, so threads can run at exactly the

same moment in time
 In these situations, it can sometimes be faster for a thread to

constantly try to acquire a lock (called busy waiting)
 Then, it can continue onward without a context switch

 Usually, regular mutexes are better because we won't have
threads constantly taking up CPU cycles doing nothing

 Even so, POSIX defines a set of spinlock functions with the same
functionality as the mutex functions, if you want them

 Now that you have locks that you can use to protect a critical
section, how should you use them?

 In general, you want critical sections to be short so that one
thread won't block another unnecessarily

 Nevertheless, breaking up one section of code into several
critical sections will introduce penalties because acquiring and
releasing locks isn't free

 Consider the examples on the next slide

// Acquire and release the lock 1,000,000 times
for (i = 0; i < 1000000; ++i)
{

pthread_mutex_lock (&mutex);
global++;
pthread_mutex_unlock (&mutex);

}

// Acquire and release the lock only once
pthread_mutex_lock (&mutex);
for (i = 0; i < 1000000; ++i)

global++;
pthread_mutex_unlock (&mutex);

 The first example on the previous slide will take much longer,
since it has to lock and unlock 1,000,000 times

 On the other hand, the second example will block all other
threads from running code that depends on the lock until it's
finished

 Neither is very realistic, since incrementing a variable
1,000,000 times in a loop is ridiculous

 There's no simple solution: depends on the problem
 Always getting the right answer is the first goal and then

tuning for better performance comes second

 We mentioned semaphores in the context of synchronizing
processes that shared memory

 We can use semaphores to synchronize threads as well
 Recall that we think of a semaphore as a non-negative integer

that can be incremented and decrementing atomically
 Calling sem_wait() (decrement) on a semaphore at 0 will block

until another thread calls sem_post() (increment)

 Return (and possibly create) a named semaphore, using the usual oflag and mode flags
 value determines the initial value of the semaphore (often 0)

 Block if the semaphore's value is 0, decrement after continuing

 Increment the semaphore's value, unblocking a process if the value is 0

 Close a semaphore

 Delete a semaphore

sem_t *sem_open (const char *name, int oflag,
/* mode_t mode, unsigned int value */);

int sem_wait (sem_t *sem);

int sem_post (sem_t *sem);

int sem_close (sem_t *sem);

int sem_unlink (const char *name);

 We can use semaphores to signal some event to another thread
 As in our earlier examples with semaphores, we initialize the

semaphore to 0
 The thread waiting for the event will call sem_wait() on the semaphore
 The thread signaling that the event has happened will call sem_post()
 The waiting thread will be awoken when the signaling thread posts
 If the signaling thread posts before the waiting starts waiting, it won't

have to wait

 The following code waits for keyboard input and posts on the semaphore
when it's done reading it

#define MAX_LENGTH 40

struct args {
sem_t *semaphore;
char buffer[MAX_LENGTH];

};

// Reads input
void *keyboard_listener (void *args) {
struct args *data = (struct args *) args;
printf ("Enter your name here: ");
assert (fgets (data->buffer, MAX_LENGTH, stdin) != NULL);

// After reading input, up the semaphore
sem_post (data->semaphore);
pthread_exit (NULL);

}

 The following code waits on the semaphore and then prints a message
based on the string that was entered

void *keyboard_echo (void *args)
{

struct args *data = (struct args *) args;

// Wait on the signal from the semaphore
sem_wait (data->semaphore);

// Trim off at the newline
char *newline = strchr (data->buffer, '\n');
if (newline != NULL)

*newline = '\0';

// Echo back the name
printf ("Hello, %s\n", data->buffer);
pthread_exit (NULL);

}

 The following code creates the semaphore and runs the two threads

pthread_t threads[2];
sem_t *sem = sem_open ("/COMP3400_Sema", O_CREAT | O_EXCL, S_IRUSR | S_IWUSR, 0);
assert (sem != SEM_FAILED);

// Set up struct instance and pass it to threads
struct args args;
args.semaphore = sem;

assert (pthread_create (&threads[0], NULL, keyboard_listener, &args) == 0);
assert (pthread_create (&threads[1], NULL, keyboard_echo, &args) == 0);

// Wait for both threads to finish, then unlink the semaphore
pthread_join (threads[0], NULL);
pthread_join (threads[1], NULL);
sem_unlink ("/COMP3400_Sema");

 It should be unsurprising that we can use semaphores instead of
locks (POSIX mutexes)

 To do so, we initialize the semaphore to a value of 1
 When entering a critical section, a thread waits on (downs) the semaphore
 When leaving a critical section, the thread posts on (ups) the semaphore

 The first thread reaching the critical section is allowed in because
the value is 1

 If we had initialized to 0, no threads could enter the critical section

 The following code adds 10 to a shared value 100,000 times, using a
semaphore for mutual exclusion

struct args {
sem_t *semaphore;
int value;

};

// Adder thread that repeatedly adds 10
void *add (void *args)
{
struct args *data = (struct args *)args;

// Atomically add 10 to value 100000 times
for (int i = 0; i < 100000; ++i)
{
sem_wait (data->semaphore);
data->value += 10;
sem_post (data->semaphore);

}
pthread_exit (NULL);

}

 The following code subtracts 10 from a shared value 100,000 times, using
the same semaphore for mutual exclusion

// Subtractor thread that repeatedly subtracts 10
void *subtract (void *args)
{
struct args *data = (struct args *) args;

// Atomically subtract 10 from value 100000 times
for (int i = 0; i < 100000; ++i)
{
sem_wait (data->semaphore);
data->value -= 10;
sem_post (data->semaphore);

}
pthread_exit (NULL);

}

 The following code creates the semaphore and runs the two threads
pthread_t threads[2];
// Create semaphore with value 1
sem_t *sem = sem_open ("/COMP3400_Sema", O_CREAT | O_EXCL,

S_IRUSR | S_IWUSR, 1);
assert (sem != SEM_FAILED);

// Set up a struct instance with semaphore and initial value 0
struct args args = { sem, 0 };
assert (pthread_create (&threads[0], NULL, add, &args) == 0);
assert (pthread_create (&threads[1], NULL, subtract, &args) == 0);
pthread_join (threads[0], NULL);
pthread_join (threads[1], NULL);
sem_unlink ("/COMP3400_Sema");
printf ("Value: %d\n", args.value); // Should be 0

 Semaphores can be used to build a lock library that functions the same as POSIX mutexes

typedef struct lock {
sem_t *semaphore;
pthread_t owner;

} lock_t;

int mutex_lock (lock_t *lock)
{
int retvalue = sem_wait (lock->semaphore); // Wait on semaphore
lock->owner = pthread_self (); // Set self as owner
return retvalue;

}

int mutex_unlock (lock_t *lock)
{
if (lock->owner != pthread_self ()) // Only the owner can unlock

return -1;
lock->owner = 0; // Clear owner
return sem_post (lock->semaphore); // Post on semaphore

}

 For mutual exclusion, POSIX mutexes are preferred over
semaphores because they're already implemented to work
correctly

 With semaphores, you have to initialize them to 1 or face the
consequences
 0means that no thread can acquire the lock
 Greater than 1 means that more than one thread can be in the

critical section
 But it's still good to stretch you brain thinking about these

things because concurrent programming is hard

 Semaphores can also be used for multiplexing, in which a
maximum number of threads are allowed to access a resource

 Consider a club where the bouncer only lets 100 people in
 This kind of synchronization is used less than signaling and

mutexes, but it can be useful to prevent slowdown from too many
threads using a resource

 Also, it can be used to prevent possible race conditions when
there's a fixed number of items but the threads themselves have
to select the one they want
 No more than the maximum number of threads will be allowed to do

selection

 In the following example, pool_semaphore is initialized to 10, preventing more than 10
threads from selecting ports at the same time

sem_wait (pool_semaphore); // Get access to resources

for (int i = 0; i < 10; ++i) // Try to acquire a port, move to the next if not available
if (pthread_mutex_trylock (incoming_mutex[i]))

{
in = i;
break;

}

// Work with incoming port, even if no outgoing port is yet needed

for (int i = 0; i < 10; ++i) // When an outgoing port is needed, acquire it like incoming
if (pthread_mutex_trylock (outgoing_mutex[i]))
{
out = i;
break;

}

pthread_mutex_unlock (incoming_mutex[in]); // Release incoming port lock
pthread_mutex_unlock (outgoing_mutex[out]); // Release outgoing port lock
sem_post (pool_semaphore); // Leave the port selection area

 Semaphores are a flexible tool that can be used for signaling,
mutual exclusion, and multiplexing

 The key is the initial value of the semaphore
 0 for signaling
 1 for mutual exclusion
 Greater than 1 for multiplexing

 Conceptually, the initial value of the semaphore is the
maximum number of concurrent accesses

 Barriers
 Condition variables

 Work on Project 3
 Read sections 7.5 and 7.6

	COMP 3400
	Last time
	Questions?
	Project 3
	Back to Locks
	POSIX mutex functions
	Mutex example
	Main program
	POSIX gotchas
	Spinlocks
	How long should critical sections be?
	Two different critical sections
	Length of critical sections
	Semaphores
	Semaphores
	Semaphore functions
	Semaphores for signaling
	Semaphore signaling example
	Semaphore signaling example continued
	Semaphore signaling example continued
	Mutual exclusion with semaphores
	Semaphore as lock example
	Semaphore as lock example continued
	Semaphore as lock example continued
	Semaphores as locks
	Semaphores as locks
	Semaphores as multiplexing
	Multiplexing example with 10 possible ports
	Semaphore summary
	Upcoming
	Next time…
	Reminders

